• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献 >>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于CT影像组学机器学习模型预测急性期创伤性脑损伤严重程度

Machine learning model based on CT radiomics for predicting severity of acute phase traumatic brain injury

摘要:

目的 观察基于CT平扫(NCCT)影像组学特征建立的机器学习(ML)模型预测急性期创伤性脑损伤(TBI)严重程度的价值.方法 回顾性收集600例TBI为观察组,以另外65例TBI为外部验证集;另前瞻性纳入50例TBI为前瞻性验证集.根据出院时格拉斯哥预后评分(GOS)将观察组患者分为高危亚组(n=240)与低危亚组(n=360).由医师A、B以相同标准分别评估观察组患者,基于首诊临床及NCCT资料以逻辑回归(LR)法建立人工模型,预测急性期TBI严重程度.按7∶3比例将观察组分为训练集(n=420,含168例高危、252例低危)与测试集(n=180,含72例高危、108例低危),基于训练集NCCT提取及筛选影像组学特征,采用LR、支持向量机(SVM)、随机森林(RF)、K近邻(KNN)4种ML法构建预测模型,分别于测试集、外部验证集(含34例高危、31例低危TBI)及前瞻性验证集(含21例高危、29例低危TBI)进行验证.结果 医师A、B判断观察组急性期TBI严重程度的曲线下面积(AUC)分别为0.606及0.771,人工模型的AUC为0.824.基于训练集NCCT筛选出的6个最佳影像组学特征构建的LR、SVM、RF和KNN ML模型及人工模型在测试集的AUC分别为0.983、0.971、0.970、0.984及0.708,在外部验证集分别为0.879、0.881、0.984、0.863及0.733,而在前瞻性验证集分别为0.984、0.873、0.982、0.897及0.704.结论 基于CT影像组学建立的ML模型能有效预测急性期TBI严重程度.

更多
  • 浏览:5
  • 下载:4

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学网小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学网小程序

使用
帮助
Alternate Text
调查问卷
Baidu
map