• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献 >>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

多参数MRI影像组学与深度学习模型鉴别良、恶性黏液样软组织肿瘤

Differentiating benign and malignant myxoid soft tissue tumors based on multiparametric MRI radiomics and deep learning models

摘要:

目的 观察基于多参数MRI构建的影像组学与深度学习(DL)模型鉴别良、恶性黏液样软组织肿瘤(MSTT)的价值.方法 回顾性纳入141例经病理证实的MSTT患者,以7∶3比例随机将其分为训练集(n=98,包括51例恶性及47例良性MSTT)及测试集(n=43,包括22例恶性及21例良性MSTT).分别于训练集T1WI和脂肪抑制(FS)-T2WI中提取并遴选影像组学特征及DL特征,并以之构建鉴别良、恶性MSTT的影像组学模型及DL模型.绘制受试者工作特征(ROC)曲线、校准曲线及决策曲线,对比评估2个模型的区分度、校准度及净收益.结果 于训练集提取并筛选得到9个最佳影像组学特征用于构建鉴别良、恶性MSTT的影像组学模型,包括2个一阶特征、1个形态特征、3个灰度共生矩阵特征、1个灰度相关矩阵特征和2个灰度大小区域矩阵特征;以其中7个最佳DL特征构建DL模型.所获影像组学模型和DL模型鉴别测试集良、恶性MSTT的ROC曲线下面积分别为0.758及0.911,后者高于前者(P=0.017);2个模型均具有良好校准度;相比影像组学模型,DL模型在测试集的总体净收益更高.结论 基于MRI构建的DL模型鉴别良、恶性MSTT的效能较影像组学模型更好且净收益更高.

更多
作者: 杨晓楠 [1] 王得志 [2] 王成健 [1] 郝大鹏 [1] 徐文坚 [1] 崔久法 [1]
期刊: 《中国医学影像技术》2024年40卷7期 1078-1082页 ISTICPKUCSCD
分类号: R738.6R445.2
栏目名称: 骨骼肌肉影像学
DOI: 10.13929/j.issn.1003-3289.2024.07.024
发布时间: 2024-09-04
  • 浏览:3
  • 下载:4

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学网小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学网小程序

使用
帮助
Alternate Text
调查问卷
Baidu
map